1 cm⁻¹ kbar⁻¹ usually belong to internal-lattice combination bands. These combination peaks show significant curvature in ν vs P plots (Fig. 7), and phase changes are reflected in the different values of pressure derivatives. This difference in response to pressure is a helpful aid for the vibrational assignment.¹⁰ The librational modes (ν_6) is often evaluated from the various combination bands, and these combination peaks are of special interest (Fig. 7). For NH₄Cl, three combination peaks with ν_6 occur at 1082 cm⁻¹ (ν_4 - ν_6), 1765 cm⁻¹ $(\nu_4 + \nu_6)$ and 2008 cm⁻¹ $(\nu_2 + \nu_6)$ at 1 bar and 296 K. The intensity of the weak $\nu_4 - \nu_6$ band is very sensitive to temperature and is not ideal for obtaining a value for ν_6 . The other two peaks (1765 and 2008 cm⁻¹) are stronger and easier to follow, with preference usually being given to the former one.³⁸ In Raman studies, however, it is difficult to obtain a value for ν_6 from the combination peak $(\nu_4 + \nu_6)$ due to the asymmetric nature of the band at ambient temperatures. The peak only splits at lower temperatures when the $u_4(\text{LO})$ becomes stronger than the $u_4(\text{TO})$ component. In both halides, the $\nu_{\mu} + \nu_{6}$ peak is very likely to be a two-phonon, zone-edge excitation since the polarization results indicate only α_{xy} activity, whereas both α_{xx} and α_{xy} activity would be expected for zone-center process. Also the observed shift (+1.5 cm⁻¹ kbar⁻¹) for the combination band $(v_4 + v_6)$ is not that expected for the zone-center excitation.

-10-

Differences in the pressure dependence of a given phonon branch at various position in the Brillouin zone are well documented and this effect is apparent in the behavior of the different combination bands.^{46,47} Similar difficulties are met in the other two combination bands of ν_6 . The approximate value for ν_6 obtained from the combination bands are somewhat a drawback; nonetheless, these bands are an important source of information about ν_6 in many ammonium salts.